Romanian National Olympiad 2018 - Grade 10 - problem 3
Source: Romania NMO - 2018
April 12, 2018
complex numbers
Problem Statement
Let n∈N≥2. Prove that for any complex numbers a1,a2,…,an and b1,b2,…,bn, the following statements are equivalent:
a) ∑k=1n∣z−ak∣2≤∑k=1n∣z−bk∣2,∀z∈C.
b) ∑k=1nak=∑k=1nbk and ∑k=1n∣ak∣2≤∑k=1n∣bk∣2.