MathDB
Romanian National Olympiad 2018 - Grade 10 - problem 3

Source: Romania NMO - 2018

April 12, 2018
complex numbers

Problem Statement

Let nN2.n \in \mathbb{N}_{\geq 2}. Prove that for any complex numbers a1,a2,,ana_1,a_2,\ldots,a_n and b1,b2,,bn,b_1,b_2,\ldots,b_n, the following statements are equivalent: a) k=1nzak2k=1nzbk2,zC.\sum_{k=1}^n|z-a_k|^2 \leq \sum_{k=1}^n|z-b_k|^2, \: \forall z \in \mathbb{C}. b) k=1nak=k=1nbk\sum_{k=1}^na_k=\sum_{k=1}^nb_k and k=1nak2k=1nbk2.\sum_{k=1}^n|a_k|^2 \leq \sum_{k=1}^n|b_k|^2.