MathDB
Problems
Contests
Undergraduate contests
Putnam
1979 Putnam
A3
Putnam 1979 A3
Putnam 1979 A3
Source:
April 8, 2022
college contests
Problem Statement
Let
x
1
,
x
2
,
x
3
,
…
x_1,x_2,x_3, \dots
x
1
,
x
2
,
x
3
,
…
be a sequence of nonzero real numbers satisfying
x
n
=
x
n
−
2
x
n
−
1
2
x
n
−
2
−
x
n
−
1
for
n
=
3
,
4
,
5
,
…
.
x_n=\frac{x_{n-2}x_{n-1}}{2x_{n-2}-x_{n-1}} \text{ for } n=3,4,5, \dots.
x
n
=
2
x
n
−
2
−
x
n
−
1
x
n
−
2
x
n
−
1
for
n
=
3
,
4
,
5
,
…
.
Establish necessary and sufficient conditions on
x
1
x_1
x
1
and
x
2
x_2
x
2
for
x
n
x_n
x
n
to be an integer for infinitely many values of
n
.
n.
n
.
Back to Problems
View on AoPS