MathDB
Moldova NMO, 11th grade, Day 2, Problem 5

Source: Rather Easy

March 4, 2007
inequalitiesinductionfunctioninequalities unsolved

Problem Statement

Real numbers a1,a2,,ana_{1},a_{2},\dots,a_{n} satisfy ai1ia_{i}\geq\frac{1}{i}, for all i=1,ni=\overline{1,n}. Prove the inequality: (a1+1)(a2+12)(an+1n)2n(n+1)!(1+a1+2a2++nan).\left(a_{1}+1\right)\left(a_{2}+\frac{1}{2}\right)\cdot\dots\cdot\left(a_{n}+\frac{1}{n}\right)\geq\frac{2^{n}}{(n+1)!}(1+a_{1}+2a_{2}+\dots+na_{n}).