MathDB
binomial sums equality

Source: Romania IMO TST 1990 p2

February 19, 2020
algebraBinomialSumcombinatorics

Problem Statement

Prove the following equality for all positive integers m,nm,n: k=0n(m+kk)2nk+k=0m(n+kk)2mk=2m+n+1\sum_{k=0}^{n} {m+k \choose k} 2^{n-k} +\sum_{k=0}^m {n+k \choose k}2^{m-k}= 2^{m+n+1}