MathDB
Problems
Contests
National and Regional Contests
USA Contests
USA - College-Hosted Events
Harvard-MIT Mathematics Tournament
2000 Harvard-MIT Mathematics Tournament
8
2000 Oral #9: Three dimensional vectors
2000 Oral #9: Three dimensional vectors
Source:
October 6, 2014
vector
trigonometry
geometry
3D geometry
sphere
geometric transformation
rotation
Problem Statement
Let
v
1
⃗
,
v
2
⃗
,
v
3
⃗
,
v
4
⃗
\vec{v_1},\vec{v_2},\vec{v_3},\vec{v_4}
v
1
,
v
2
,
v
3
,
v
4
and
v
5
⃗
\vec{v_5}
v
5
be vectors in three dimensions. Show that for some
i
,
j
i,j
i
,
j
in
1
,
2
,
3
,
4
,
5
1,2,3,4,5
1
,
2
,
3
,
4
,
5
,
v
i
⃗
⋅
v
j
⃗
≥
0
\vec{v_i}\cdot \vec{v_j}\ge 0
v
i
⋅
v
j
≥
0
.
Back to Problems
View on AoPS