MathDB
Irish 1988 paper 1 #12

Source:

September 7, 2014
trigonometry

Problem Statement

Prove that if nn is a positive integer ,then cos4π2n+1+cos42π2n+1++cos4nπ2n+1=6n516.cos^4\frac{\pi}{2n+1}+cos^4\frac{2\pi}{2n+1}+\cdots+cos^4\frac{n\pi}{2n+1}=\frac{6n-5}{16}.