MathDB
Miklós Schweitzer 1956- Problem 8

Source:

October 11, 2015
college contestsFunctional Analysisreal analysis

Problem Statement

8. Let (an)n=1(a_n)_{n=1}^{\infty} be a sequence of positive numbers and suppose that n=1an2\sum_{n=1}^{\infty} a_n^2 is divergent. Let further 0<ϵ<120<\epsilon<\frac{1}{2}. Show that there exists a sequence (bn)n=1(b_n)_{n=1}^{\infty} of positive numbers such that n=1bn2\sum_{n=1}^{\infty}b_n^2 is convergent and
n=1Nanbn>(n=1Nan2)12ϵ\sum_{n=1}^{N}a_n b_n >(\sum_{n=1}^{N}a_n^2)^{\frac{1}{2}-\epsilon}
for every positive integer NN. (S. 8)