MathDB
Two rays

Source: AHSME 1995 #18

November 21, 2005
trigonometrytrig identitiesLaw of CosinesgeometryLaw of SinesAMC

Problem Statement

Two rays with common endpoint OO forms a 3030^\circ angle. Point AA lies on one ray, point BB on the other ray, and AB=1AB = 1. The maximum possible length of OBOB is
<spanclass=latexbold>(A)</span> 1<spanclass=latexbold>(B)</span> 1+32<spanclass=latexbold>(C)</span> 3<spanclass=latexbold>(D)</span> 2<spanclass=latexbold>(E)</span> 43<span class='latex-bold'>(A)</span>\ 1 \qquad <span class='latex-bold'>(B)</span>\ \dfrac{1+\sqrt{3}}{\sqrt{2}} \qquad <span class='latex-bold'>(C)</span>\ \sqrt{3} \qquad <span class='latex-bold'>(D)</span>\ 2 \qquad <span class='latex-bold'>(E)</span>\ \dfrac{4}{\sqrt{3}}