Suppose that a function f(x) defined in −1<x<1 satisfies the following properties (i) , (ii), (iii).(i) f′(x) is continuous.(ii) When −1<x<0,f′(x)<0,f′(0)=0, when 0<x<1,f′(x)>0.(iii) f(0)=−1Let F(x)=∫0x1+{f′(t)}2dt(−1<x<1). If F(sinθ)=cθ(c:constant) holds for −2π<θ<2π, then find f(x).1975 Waseda University entrance exam/Science and Technology