MathDB
Sum of possible function values

Source: STEMS 2023 Maths CAT A Part A P4

January 8, 2023
functionComputationalSTEMSalgebra

Problem Statement

Let f:NNf : \mathbb{N} \to \mathbb{N} be a function such that the following conditions hold:
 (1)  f(1)=1.\qquad\ (1) \; f(1) = 1.
 (2)  (x+y)2<f(x+y)f(x)+f(y)    x,yN.\qquad\ (2) \; \dfrac{(x + y)}{2} < f(x + y) \le f(x) + f(y) \; \forall \; x, y \in \mathbb{N}.
 (3)  f(4n+1)<2f(2n+1)    n0.\qquad\ (3) \; f(4n + 1) < 2f(2n + 1) \; \forall \; n \ge 0.
 (4)  f(4n+3)2f(2n+1)    n0.\qquad\ (4) \; f(4n + 3) \le 2f(2n + 1) \; \forall \; n \ge 0.
Find the sum of all possible values of f(2023)f(2023).