MathDB
Problems
Contests
International Contests
Middle European Mathematical Olympiad
2016 Middle European Mathematical Olympiad
1
inequality on n variables greater than -1
inequality on n variables greater than -1
Source: MEMO 2016 I1
August 24, 2016
inequalities
inequalities proposed
Problem Statement
Let
n
≥
2
n \ge 2
n
≥
2
be an integer, and let
x
1
,
x
2
,
…
,
x
n
x_1, x_2, \ldots, x_n
x
1
,
x
2
,
…
,
x
n
be reals for which: (a)
x
j
>
−
1
x_j > -1
x
j
>
−
1
for
j
=
1
,
2
,
…
,
n
j = 1, 2, \ldots, n
j
=
1
,
2
,
…
,
n
and(b)
x
1
+
x
2
+
…
+
x
n
=
n
.
x_1 + x_2 + \ldots + x_n = n.
x
1
+
x
2
+
…
+
x
n
=
n
.
Prove that
∑
j
=
1
n
1
1
+
x
j
≥
∑
j
=
1
n
x
j
1
+
x
j
2
\sum_{j = 1}^{n} \frac{1}{1 + x_j} \ge \sum_{j = 1}^{n} \frac{x_j}{1 + x_j^2}
j
=
1
∑
n
1
+
x
j
1
≥
j
=
1
∑
n
1
+
x
j
2
x
j
and determine when does the equality occur.
Back to Problems
View on AoPS