MathDB
Grade IX - Problem II

Source: Romanian National Mathematical Olympiad 2007

April 14, 2007
geometrygeometry unsolved

Problem Statement

Let ABCABC be an acute angled triangle and point MM chosen differently from A,B,CA,B,C. Prove that MM is the orthocenter of triangle ABCABC if and only if BCMAMA+CAMBMB+ABMCMC=0\frac{BC}{MA}\vec{MA}+\frac{CA}{MB}\vec{MB}+\frac{AB}{MC}\vec{MC}= \vec{0}