MathDB
Comparing Side Lengths

Source:

February 6, 2009
geometryratio

Problem Statement

The base of a triangle is twice as long as a side of a square and their areas are the same. Then the ratio of the altitude of the triangle to the side of the square is: <spanclass=latexbold>(A)</span> 14<spanclass=latexbold>(B)</span> 12<spanclass=latexbold>(C)</span> 1<spanclass=latexbold>(D)</span> 2<spanclass=latexbold>(E)</span> 4 <span class='latex-bold'>(A)</span>\ \frac{1}{4} \qquad <span class='latex-bold'>(B)</span>\ \frac{1}{2} \qquad <span class='latex-bold'>(C)</span>\ 1 \qquad <span class='latex-bold'>(D)</span>\ 2 \qquad <span class='latex-bold'>(E)</span>\ 4