Romania District Olympiad 2010
Source: Grade X
March 13, 2010
logarithmsfloor functionalgebra proposedalgebra
Problem Statement
Prove the following equalities of sets:
\text{i)} \{x\in \mathbb{R}\ |\ \log_2 \lfloor x \rfloor \equal{} \lfloor \log_2 x\rfloor \} \equal{} \bigcup_{m\in \mathbb{N}} \left[2^m,2^m \plus{} 1\right)
\text{ii)} \{x\in \mathbb{R}\ |\ 2^{\lfloor x\rfloor} \equal{} \left\lfloor 2^x\right\rfloor \} \equal{} \bigcup_{m\in \mathbb{N}} \left[m, \log_2 (2^m \plus{} 1) \right)