MathDB
Problem 3 of Second round

Source: VII International Festival of Young Mathematicians Sozopol 2016, Theme for 10-12 grade

August 31, 2019
algebraFunctional Equationsfunctions

Problem Statement

Let f:R2Rf: \mathbb{R}^2\rightarrow \mathbb{R} be a function for which for arbitrary x,y,zRx,y,z\in \mathbb{R} we have that f(x,y)+f(y,z)+f(z,x)=0f(x,y)+f(y,z)+f(z,x)=0. Prove that there exist function g:RRg:\mathbb{R}\rightarrow \mathbb{R} for which: f(x,y)=g(x)g(y),x,yRf(x,y)=g(x)-g(y),\, \forall x,y\in \mathbb{R}.