MathDB
Geometric progression of length 2011

Source:

November 25, 2019
geometric sequencealgebra

Problem Statement

Consider 2011 2011 positive real numbers a1,a2,,a2011. a_1,a_2,\ldots ,a_{2011} . If they are in geometric progression, show that there exists a real number λ \lambda such that any i{1,2,,1005} i\in\{ 1,2,\ldots , 1005 \} implies λ=aia2012i. \lambda =a_i\cdot a_{2012-i} . Disprove the converse.
Teodor Radu