MathDB
Externally tangent circles

Source: 0

April 23, 2009
geometry

Problem Statement

C1 C_{1} and C2 C_{2} be two externally tangent circles with diameter [AB] \left[AB\right] and [BC] \left[BC\right], with center D D and E E, respectively. Let F F be the intersection point of tangent line from A to C2 C_{2} and tangent line from C C to C1 C_{1} (both tangents line on the same side of AC AC). If \left|DB\right|\equal{}\left|BE\right|\equal{}\sqrt{2}, find the area of triangle AFC AFC.
<spanclass=latexbold>(A)</span> 732<spanclass=latexbold>(B)</span> 922<spanclass=latexbold>(C)</span> 42<spanclass=latexbold>(D)</span> 23<spanclass=latexbold>(E)</span> 22<span class='latex-bold'>(A)</span>\ \frac{7\sqrt{3} }{2} \qquad<span class='latex-bold'>(B)</span>\ \frac{9\sqrt{2} }{2} \qquad<span class='latex-bold'>(C)</span>\ 4\sqrt{2} \qquad<span class='latex-bold'>(D)</span>\ 2\sqrt{3} \qquad<span class='latex-bold'>(E)</span>\ 2\sqrt{2}