MathDB
1994 AMC 12 #8

Source:

December 30, 2011
geometryperimeterAMC

Problem Statement

In the polygon shown, each side is perpendicular to its adjacent sides, and all 28 of the sides are congruent. The perimeter of the polygon is 5656. The area of the region bounded by the polygon is [asy] draw((0,0)--(1,0)--(1,-1)--(2,-1)--(2,-2)--(3,-2)--(3,-3)--(4,-3)--(4,-2)--(5,-2)--(5,-1)--(6,-1)--(6,0)--(7,0)--(7,1)--(6,1)--(6,2)--(5,2)--(5,3)--(4,3)--(4,4)--(3,4)--(3,3)--(2,3)--(2,2)--(1,2)--(1,1)--(0,1)--cycle); [/asy] <spanclass=latexbold>(A)</span> 84<spanclass=latexbold>(B)</span> 96<spanclass=latexbold>(C)</span> 100<spanclass=latexbold>(D)</span> 112<spanclass=latexbold>(E)</span> 196 <span class='latex-bold'>(A)</span>\ 84 \qquad<span class='latex-bold'>(B)</span>\ 96 \qquad<span class='latex-bold'>(C)</span>\ 100 \qquad<span class='latex-bold'>(D)</span>\ 112 \qquad<span class='latex-bold'>(E)</span>\ 196