MathDB
| a_1+a_2+...+a_n - nS | <= 997 (I Soros Olympiad 1994-95 R1 10.5)

Source:

July 31, 2021
algebrainequalities

Problem Statement

Let a1,a2,...,a1994a_1,a_2,...,a_{1994} be real numbers in the interval [1,1][-1,1], S=a1+a2+...+a19941994.S=\frac{a_1+a_2+...+a_{1994}}{1994}. Prove that for an arbitrary natural , 1n19941\le n \le 1994, holds the inequality a1+a2+...+annS997.| a_1+a_2+...+a_n - nS | \le 997.