equal sum of areas, 2 squares related to homothety
Source: Dutch NMO 2008 p1
August 28, 2019
geometrygeometric transformationhomothetysquare
Problem Statement
Suppose we have a square and a point in the interior of this square.
Under homothety with centre and ratio of magnification , this square becomes another square .
Prove that the sum of the areas of the two quadrilaterals and are equal to the sum of the areas of the two quadrilaterals and .[asy]
unitsize(3 cm);pair[] A, B, C, D;
pair S;A[1] = (0,1);
B[1] = (0,0);
C[1] = (1,0);
D[1] = (1,1);
S = (0.3,0.6);
A[0] = interp(S,A[1],2/3);
B[0] = interp(S,B[1],2/3);
C[0] = interp(S,C[1],2/3);
D[0] = interp(S,D[1],2/3);draw(A[0]--B[0]--C[0]--D[0]--cycle);
draw(A[1]--B[1]--C[1]--D[1]--cycle);
draw(A[1]--S, dashed);
draw(B[1]--S, dashed);
draw(C[1]--S, dashed);
draw(D[1]--S, dashed);dot("", A[0], N);
dot("", B[0], SE);
dot("", C[0], SW);
dot("", D[0], SE);
dot("", A[1], NW);
dot("", B[1], SW);
dot("", C[1], SE);
dot("", D[1], NE);
dot("", S, dir(270));
[/asy]