MathDB
equal sum of areas, 2 squares related to homothety

Source: Dutch NMO 2008 p1

August 28, 2019
geometrygeometric transformationhomothetysquare

Problem Statement

Suppose we have a square ABCDABCD and a point SS in the interior of this square. Under homothety with centre SS and ratio of magnification k>1k > 1, this square becomes another square ABCDA'B'C'D'. Prove that the sum of the areas of the two quadrilaterals AABBA'ABB' and CCDDC'CDD' are equal to the sum of the areas of the two quadrilaterals BBCCB'BCC' and DDAAD'DAA'.
[asy] unitsize(3 cm);
pair[] A, B, C, D; pair S;
A[1] = (0,1); B[1] = (0,0); C[1] = (1,0); D[1] = (1,1); S = (0.3,0.6); A[0] = interp(S,A[1],2/3); B[0] = interp(S,B[1],2/3); C[0] = interp(S,C[1],2/3); D[0] = interp(S,D[1],2/3);
draw(A[0]--B[0]--C[0]--D[0]--cycle); draw(A[1]--B[1]--C[1]--D[1]--cycle); draw(A[1]--S, dashed); draw(B[1]--S, dashed); draw(C[1]--S, dashed); draw(D[1]--S, dashed);
dot("AA", A[0], N); dot("BB", B[0], SE); dot("CC", C[0], SW); dot("DD", D[0], SE); dot("AA'", A[1], NW); dot("BB'", B[1], SW); dot("CC'", C[1], SE); dot("DD'", D[1], NE); dot("SS", S, dir(270)); [/asy]