MathDB
Putnam 2008 B2

Source:

December 8, 2008
PutnamlogarithmsintegrationlimitcalculusfactorialSupport

Problem Statement

Let F_0\equal{}\ln x. For n0 n\ge 0 and x>0, x>0, let \displaystyle F_{n\plus{}1}(x)\equal{}\int_0^xF_n(t)\,dt. Evaluate limnn!Fn(1)lnn. \displaystyle\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.