MathDB
Romania NMO 2022 Grade 11 P2

Source: Romania National Olympiad 2022

April 20, 2022
linear algebraMatricesromania

Problem Statement

Let F\mathcal{F} be the set of pairs of matrices (A,B)M2(Z)×M2(Z)(A,B)\in\mathcal{M}_2(\mathbb{Z})\times\mathcal{M}_2(\mathbb{Z}) for which there exists some positive integer kk and matrices C1,C2,,Ck{A,B}C_1,C_2,\ldots, C_k\in\{A,B\} such that C1C2Ck=O2.C_1C_2\cdots C_k=O_2. For each (A,B)F,(A,B)\in\mathcal{F}, let k(A,B)k(A,B) denote the minimal positive integer kk which satisfies the latter property.
[*]Let (A,B)F(A,B)\in\mathcal{F} with det(A)=0,det(B)0\det(A)=0,\det(B)\neq 0 and k(A,B)=p+2k(A,B)=p+2 for some pN.p\in\mathbb{N}^*. Show that ABpA=O2.AB^pA=O_2. [*]Prove that for any k3k\geq 3 there exists a pair (A,B)F(A,B)\in\mathcal{F} such that k(A,B)=k.k(A,B)=k. Bogdan Blaga