MathDB
Romania National Olympiad 2010 - Grade XI

Source:

April 10, 2011
functionreal analysisreal analysis unsolved

Problem Statement

Let f:R[0,)f:\mathbb{R}\rightarrow [0,\infty). Prove that f(x+y)(y+1)f(x), ()xRf(x+y)\ge (y+1)f(x),\ (\forall)x\in \mathbb{R} if and only if the function g:R[0,), g(x)=exf(x), ()xRg:\mathbb{R}\rightarrow [0,\infty),\ g(x)=e^{-x}f(x),\ (\forall)x\in \mathbb{R} is increasing.