MathDB
Today's calculation of Integral 527

Source: 2007 Osaka University of Education entrance exam

January 10, 2010
calculusintegrationcalculus computations

Problem Statement

Let n, m n,\ m be positive integers and α, β \alpha ,\ \beta be real numbers. Prove the following equations. (1) \int_{\alpha}^{\beta} (x \minus{} \alpha)(x \minus{} \beta)\ dx \equal{} \minus{} \frac 16 (\beta \minus{} \alpha)^3 (2) \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)\ dx \equal{} \minus{} \frac {n!}{(n \plus{} 2)!}(\beta \minus{} \alpha)^{n \plus{} 2} (3) \int_{\alpha}^{\beta} (x \minus{} \alpha)^n(x \minus{} \beta)^mdx \equal{} ( \minus{} 1)^{m}\frac {n!m!}{(n \plus{} m \plus{} 1)!}(\beta \minus{} \alpha)^{n \plus{} m \plus{} 1}