MathDB
This function is nondecreasing (knowledge of calculus not required)

Source: Romania National Olympiad 2016, grade x, p.1

August 25, 2019
functioncalculusalgebra

Problem Statement

Let be a natural number n2 n\ge 2 and n n positive real numbers a1,a2,,an a_1,a_2,\ldots ,a_n whose product is 1. 1. Prove that the function f:\mathbb{R}_{>0}\longrightarrow\mathbb{R} ,  f(x)=\prod_{i=1}^n \left( 1+a_i^x \right) , is nondecreasing.