MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1967 Miklós Schweitzer
7
Miklos Schweitzer 1967_7
Miklos Schweitzer 1967_7
Source:
October 6, 2008
linear algebra
matrix
probability
geometry
3D geometry
sphere
limit
Problem Statement
Let
U
U
U
be an
n
×
n
n \times n
n
×
n
orthogonal matrix. Prove that for any
n
×
n
n \times n
n
×
n
matrix
A
A
A
, the matrices
A
m
=
1
m
+
1
∑
j
=
0
m
U
−
j
A
U
j
A_m=\frac{1}{m+1} \sum_{j=0}^m U^{-j}AU^j
A
m
=
m
+
1
1
j
=
0
∑
m
U
−
j
A
U
j
converge entrywise as
m
→
∞
.
m \rightarrow \infty.
m
→
∞.
L. Kovacs
Back to Problems
View on AoPS