Given positive integers m and n. Let ai,j(1≤i≤m,1≤j≤n) be non-negative real numbers, such that
ai,1≥ai,2≥⋯≥ai,n and a1,j≥a2,j≥⋯≥am,j
holds for all 1≤i≤m and 1≤j≤n. Denote
Xi,j=a1,j+⋯+ai−1,j+ai,j+ai,j−1+⋯+ai,1,Yi,j=am,j+⋯+ai+1,j+ai,j+ai,j+1+⋯+ai,n.
Prove that
i=1∏mj=1∏nXi,j≥i=1∏mj=1∏nYi,j.