MathDB
Inequality with ordering

Source: 2021 China TST, Test 1, Day 1 P1

March 17, 2021
inequalities

Problem Statement

Given positive integers mm and nn. Let ai,j(1im,1jn)a_{i,j} ( 1 \le i \le m, 1 \le j \le n) be non-negative real numbers, such that ai,1ai,2ai,n and a1,ja2,jam,j a_{i,1} \ge a_{i,2} \ge \cdots \ge a_{i,n} \text{ and } a_{1,j} \ge a_{2,j} \ge \cdots \ge a_{m,j} holds for all 1im1 \le i \le m and 1jn1 \le j \le n. Denote Xi,j=a1,j++ai1,j+ai,j+ai,j1++ai,1, X_{i,j}=a_{1,j}+\cdots+a_{i-1,j}+a_{i,j}+a_{i,j-1}+\cdots+a_{i,1}, Yi,j=am,j++ai+1,j+ai,j+ai,j+1++ai,n. Y_{i,j}=a_{m,j}+\cdots+a_{i+1,j}+a_{i,j}+a_{i,j+1}+\cdots+a_{i,n}. Prove that i=1mj=1nXi,ji=1mj=1nYi,j. \prod_{i=1}^{m} \prod_{j=1}^{n} X_{i,j} \ge \prod_{i=1}^{m} \prod_{j=1}^{n} Y_{i,j}.