MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2000 Moldova National Olympiad
Problem 7
(a^3+a^2+3)^2>4a^3(a-1)^2 over R
(a^3+a^2+3)^2>4a^3(a-1)^2 over R
Source: Moldova 2000 Grade 8 P7
April 25, 2021
algebra
inequalities
Problem Statement
For any real number
a
a
a
, prove the inequality:
(
a
3
+
a
2
+
3
)
2
>
4
a
3
(
a
ā
1
)
2
.
\left(a^3+a^2+3\right)^2>4a^3(a-1)^2.
(
a
3
+
a
2
+
3
)
2
>
4
a
3
(
a
ā
1
)
2
.
Back to Problems
View on AoPS