MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN O Problems
6
O 6
O 6
Source:
May 25, 2007
modular arithmetic
induction
Problem Statement
Let
S
S
S
be a set of integers such that [*] there exist
a
,
b
∈
S
a, b \in S
a
,
b
∈
S
with
gcd
(
a
,
b
)
=
gcd
(
a
−
2
,
b
−
2
)
=
1
\gcd(a, b)=\gcd(a-2,b-2)=1
g
cd
(
a
,
b
)
=
g
cd
(
a
−
2
,
b
−
2
)
=
1
, [*] if
x
,
y
∈
S
x,y\in S
x
,
y
∈
S
, then
x
2
−
y
∈
S
x^2 -y\in S
x
2
−
y
∈
S
. Prove that
S
=
Z
S=\mathbb{Z}
S
=
Z
.
Back to Problems
View on AoPS