MathDB
O 6

Source:

May 25, 2007
modular arithmeticinduction

Problem Statement

Let SS be a set of integers such that [*] there exist a,bSa, b \in S with gcd(a,b)=gcd(a2,b2)=1\gcd(a, b)=\gcd(a-2,b-2)=1, [*] if x,ySx,y\in S, then x2ySx^2 -y\in S. Prove that S=ZS=\mathbb{Z}.