MathDB
Japan 1997 inequality

Source: Japan MO 1997, problem #2

July 27, 2003
inequalitiescalculusAMCthree variable inequalityHi

Problem Statement

Prove that (b+ca)2(b+c)2+a2+(c+ab)2(c+a)2+b2+(a+bc)2(a+b)2+c235 \frac{\left(b+c-a\right)^{2}}{\left(b+c\right)^{2}+a^{2}}+\frac{\left(c+a-b\right)^{2}}{\left(c+a\right)^{2}+b^{2}}+\frac{\left(a+b-c\right)^{2}}{\left(a+b\right)^{2}+c^{2}}\geq\frac35 for any positive real numbers a a, b b, c c.