MathDB
Problems
Contests
National and Regional Contests
Cuba Contests
Cuba MO
2005 Cuba MO
4
f(x)f(y) = f(xy) + 1/x + 1/y
f(x)f(y) = f(xy) + 1/x + 1/y
Source: 2005 Cuba MO 2.4
September 15, 2024
algebra
functional
Problem Statement
Determine all functions
f
:
R
+
→
R
f : R_+ \to R
f
:
R
+
→
R
such that:
f
(
x
)
f
(
y
)
=
f
(
x
y
)
+
1
x
+
1
y
f(x)f(y) = f(xy) + \frac{1}{x} + \frac{1}{y}
f
(
x
)
f
(
y
)
=
f
(
x
y
)
+
x
1
+
y
1
for all
x
,
y
x, y
x
,
y
positive reals.
Back to Problems
View on AoPS