MathDB
Problems
Contests
Undergraduate contests
SEEMOUS
2011 SEEMOUS
Problem 3
Problem 3
Part of
2011 SEEMOUS
Problems
(1)
vector inequality involving normed and inner products
Source: SEEMOUS 2011 P3
6/18/2021
Given vectors
a
‾
,
b
‾
,
c
‾
∈
R
n
\overline a,\overline b,\overline c\in\mathbb R^n
a
,
b
,
c
∈
R
n
, show that
(
∥
a
‾
∥
⟨
b
‾
,
c
‾
⟩
)
2
+
(
∥
b
‾
∥
⟨
a
‾
,
c
‾
⟩
)
2
≤
∥
a
‾
∥
∥
b
‾
∥
(
∥
a
‾
∥
∥
b
‾
∥
+
∣
⟨
a
‾
,
b
‾
⟩
∣
)
∥
c
‾
∥
2
(\lVert\overline a\rVert\langle\overline b,\overline c\rangle)^2+(\lVert\overline b\rVert\langle\overline a,\overline c\rangle)^2\le\lVert\overline a\rVert\lVert\overline b\rVert(\lVert\overline a\rVert\lVert\overline b\rVert+|\langle\overline a,\overline b\rangle|)\lVert\overline c\rVert^2
(∥
a
∥
⟨
b
,
c
⟩
)
2
+
(∥
b
∥
⟨
a
,
c
⟩
)
2
≤
∥
a
∥
∥
b
∥
(∥
a
∥
∥
b
∥
+
∣
⟨
a
,
b
⟩
∣
)
∥
c
∥
2
where
⟨
x
‾
,
y
‾
⟩
\langle\overline x,\overline y\rangle
⟨
x
,
y
⟩
denotes the scalar (inner) product of the vectors
x
‾
\overline x
x
and
y
‾
\overline y
y
and
∥
x
‾
∥
2
=
⟨
x
‾
,
x
‾
⟩
\lVert\overline x\rVert^2=\langle\overline x,\overline x\rangle
∥
x
∥
2
=
⟨
x
,
x
⟩
.
vector
inequalities
linear algebra