Problems(1)
Given real numbers b0,b1,…,b2019 with b2019=0, let z1,z2,…,z2019 be the roots in the complex plane of the polynomial
P(z)=k=0∑2019bkzk.
Let μ=(∣z1∣+⋯+∣z2019∣)/2019 be the average of the distances from z1,z2,…,z2019 to the origin. Determine the largest constant M such that μ≥M for all choices of b0,b1,…,b2019 that satisfy
1≤b0<b1<b2<⋯<b2019≤2019. PutnamPutnam 2019