MathDB
Problems
Contests
Undergraduate contests
Putnam
2016 Putnam
B1
B1
Part of
2016 Putnam
Problems
(1)
Putnam 2016 B1
Source:
12/4/2016
Let
x
0
,
x
1
,
x
2
,
…
x_0,x_1,x_2,\dots
x
0
,
x
1
,
x
2
,
…
be the sequence such that
x
0
=
1
x_0=1
x
0
=
1
and for
n
≥
0
,
n\ge 0,
n
≥
0
,
x
n
+
1
=
ln
(
e
x
n
−
x
n
)
x_{n+1}=\ln(e^{x_n}-x_n)
x
n
+
1
=
ln
(
e
x
n
−
x
n
)
(as usual, the function
ln
\ln
ln
is the natural logarithm). Show that the infinite series
x
0
+
x
1
+
x
2
+
⋯
x_0+x_1+x_2+\cdots
x
0
+
x
1
+
x
2
+
⋯
converges and find its sum.
Putnam
Putnam 2016
Putnam calculus