Putnam 1984/A5) Let R be the region consisting of all triples (x,y,z) of nonnegative real numbers satisfying x+y+z≤1. Let w=1−x−y−z. Express the value of the triple integral
∭Rxy9z8w4 dx dy dz
in the form a!b!c!d!/n! where a,b,c,d and n are positive integers.
[hide="A solution"]\iiint_{R}xy^{9}z^{8}w^{4}\ dx dy dz = 4\iiint_{R}\int_{0}^{1-x-y-z}xy^{9}z^{8}w^{3}\ dw dx dy dz = 4\iiiint_{Q}xy^{9}z^{8}w^{3}\ dw dx dy dzwhere Q={(x,y,z,w)∈R4∣ x,y,z,w≥0,x+y+z+w≤1}, which is a Dirichlet integral giving4\iiiint_{Q}x^{1}y^{9}z^{8}w^{3}\ dw dx dy dz = 4\cdot\frac{1!9!8!3!}{(2+10+9+4)!}= \frac{1!9!8!4!}{25!} Putnamcalculusintegrationcollege contests