MathDB
Problems
Contests
Undergraduate contests
Putnam
1983 Putnam
B5
B5
Part of
1983 Putnam
Problems
(1)
limit integral with distance to nearest integer
Source: Putnam 1983 B5
9/17/2021
Let
∥
u
∥
\lVert u\rVert
∥
u
∥
denote the distance from the real number
u
u
u
to the nearest integer. For positive integers
n
n
n
, let
a
n
=
1
n
∫
1
n
∥
n
x
∥
d
x
.
a_n=\frac1n\int^n_1\left\lVert\frac nx\right\rVert dx.
a
n
=
n
1
∫
1
n
x
n
d
x
.
Determine
lim
n
→
∞
a
n
\lim_{n\to\infty}a_n
lim
n
→
∞
a
n
.
calculus
integration
limits