MathDB
Problems
Contests
Undergraduate contests
Putnam
1983 Putnam
B4
B4
Part of
1983 Putnam
Problems
(1)
Sequence contains a perfect square
Source: Putnam 1983
6/14/2017
Problem. Let
f
:
R
0
+
→
R
0
+
f:\mathbb{R}_0^+\rightarrow\mathbb{R}_0^+
f
:
R
0
+
→
R
0
+
be a function defined as
f
(
n
)
=
n
+
⌊
n
⌋
∀
n
∈
R
0
+
.
f(n)=n+\lfloor\sqrt{n}\rfloor~\forall~n\in\mathbb{R}_0^+.
f
(
n
)
=
n
+
⌊
n
⌋
∀
n
∈
R
0
+
.
Prove that for any positive integer
m
,
m,
m
,
the sequence
m
,
f
(
m
)
,
f
(
f
(
m
)
)
,
f
(
f
(
f
(
m
)
)
)
,
…
m,f(m),f(f(m)),f(f(f(m))),\ldots
m
,
f
(
m
)
,
f
(
f
(
m
))
,
f
(
f
(
f
(
m
)))
,
…
contains a perfect square.
number theory
Putnam
function
Sequence