MathDB
Problems
Contests
Undergraduate contests
Putnam
1982 Putnam
A2
A2
Part of
1982 Putnam
Problems
(1)
converge of infinite faulhaber sum
Source: Putnam 1982 A2
9/19/2021
For positive real
x
x
x
, let
B
n
(
x
)
=
1
x
+
2
x
+
…
+
n
x
.
B_n(x)=1^x+2^x+\ldots+n^x.
B
n
(
x
)
=
1
x
+
2
x
+
…
+
n
x
.
Prove or disprove the convergence of
∑
n
=
2
∞
B
n
(
log
n
2
)
(
n
log
2
n
)
2
.
\sum_{n=2}^\infty\frac{B_n(\log_n2)}{(n\log_2n)^2}.
n
=
2
∑
∞
(
n
lo
g
2
n
)
2
B
n
(
lo
g
n
2
)
.
Summation
real analysis
algebra