MathDB
Problems
Contests
Undergraduate contests
Putnam
1980 Putnam
A5
A5
Part of
1980 Putnam
Problems
(1)
Putnam 1980 A5
Source: Putnam 1980
4/1/2022
Let
P
(
t
)
P(t)
P
(
t
)
be a nonconstant polynomial with real coefficients. Prove that the system of simultaneous equations
∫
0
x
P
(
t
)
sin
t
d
t
=
0
,
∫
0
x
P
(
t
)
cos
t
d
t
=
0
\int_{0}^{x} P(t)\sin t \, dt =0, \;\;\;\; \int_{0}^{x} P(t) \cos t \, dt =0
∫
0
x
P
(
t
)
sin
t
d
t
=
0
,
∫
0
x
P
(
t
)
cos
t
d
t
=
0
has only finitely many solutions
x
.
x.
x
.
Putnam
trigonometry
integration
polynomial
Indefinite integral