MathDB
Problems
Contests
Undergraduate contests
Putnam
1979 Putnam
A6
A6
Part of
1979 Putnam
Problems
(1)
Putnam 1979 A6
Source:
4/8/2022
Let
0
≤
p
i
≤
1
0\leq p_i \leq 1
0
≤
p
i
≤
1
for
i
=
1
,
2
,
…
,
n
.
i=1,2, \dots, n.
i
=
1
,
2
,
…
,
n
.
Show that
∑
i
=
1
n
1
∣
x
−
p
i
∣
≤
8
n
(
1
+
1
/
3
+
1
/
5
+
⋯
+
1
2
n
−
1
)
\sum_{i=1}^{n} \frac{1}{|x-p_i|} \leq 8n(1+1/3+1/5+\dots +\frac{1}{2n-1})
i
=
1
∑
n
∣
x
−
p
i
∣
1
≤
8
n
(
1
+
1/3
+
1/5
+
⋯
+
2
n
−
1
1
)
for some
x
x
x
satisfying
0
≤
x
≤
1.
0\leq x \leq 1.
0
≤
x
≤
1.
college contests