MathDB
Problems
Contests
Undergraduate contests
Putnam
1968 Putnam
B4
B4
Part of
1968 Putnam
Problems
(1)
Putnam 1968 B4
Source: Putnam 1968
2/19/2022
Suppose that
f
:
R
→
R
f:\mathbb{R} \rightarrow \mathbb{R}
f
:
R
→
R
is continuous and
L
=
∫
−
∞
∞
f
(
x
)
d
x
L=\int_{-\infty}^{\infty} f(x) dx
L
=
∫
−
∞
∞
f
(
x
)
d
x
exists. Show that
∫
−
∞
∞
f
(
x
−
1
x
)
d
x
=
L
.
\int_{-\infty}^{\infty}f\left(x-\frac{1}{x}\right)dx=L.
∫
−
∞
∞
f
(
x
−
x
1
)
d
x
=
L
.
Putnam
integration
Measure theory