MathDB
Problems
Contests
Undergraduate contests
Putnam
1968 Putnam
A3
A3
Part of
1968 Putnam
Problems
(1)
Putnam 1968 A3
Source: Putnam 1968
2/19/2022
Let
S
S
S
be a finite set and
P
P
P
the set of all subsets of
S
S
S
. Show that one can label the elements of
P
P
P
as
A
i
A_i
A
i
such that (1)
A
1
=
∅
A_1 =\emptyset
A
1
=
∅
. (2) For each
n
≥
1
n\geq1
n
≥
1
we either have
A
n
−
1
⊂
A
n
A_{n-1}\subset A_{n}
A
n
−
1
⊂
A
n
and
∣
A
n
∖
A
n
−
1
∣
=
1
|A_{n} \setminus A_{n-1}|=1
∣
A
n
∖
A
n
−
1
∣
=
1
or
A
n
⊂
A
n
−
1
A_{n}\subset A_{n-1}
A
n
⊂
A
n
−
1
and
∣
A
n
−
1
∖
A
n
∣
=
1.
|A_{n-1} \setminus A_{n}|=1.
∣
A
n
−
1
∖
A
n
∣
=
1.
Putnam
combinatorics
Sets