MathDB
Problems
Contests
Undergraduate contests
Putnam
1964 Putnam
A4
A4
Part of
1964 Putnam
Problems
(1)
Putnam 1964 A4
Source: Putnam 1964
3/5/2022
Let
p
n
p_n
p
n
be a bounded sequence of integers which satisfies the recursion
p
n
=
p
n
−
1
+
p
n
−
2
+
p
n
−
3
p
n
−
4
p
n
−
1
p
n
−
2
+
p
n
−
3
+
p
n
−
4
.
p_n =\frac{p_{n-1} +p_{n-2} + p_{n-3}p _{n-4}}{p_{n-1} p_{n-2}+ p_{n-3} +p_{n-4}}.
p
n
=
p
n
−
1
p
n
−
2
+
p
n
−
3
+
p
n
−
4
p
n
−
1
+
p
n
−
2
+
p
n
−
3
p
n
−
4
.
Show that the sequence eventually becomes periodic.
Putnam
recurrence relation
periodic