MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2023 Miklós Schweitzer
3
3
Part of
2023 Miklós Schweitzer
Problems
(1)
Inequality with distances in finite metric space
Source: Miklos Schweitzer 2023, Problem 3
3/7/2024
Let
X
=
{
x
0
,
x
1
,
…
,
x
n
}
X =\{x_0, x_1,\ldots , x_n\}
X
=
{
x
0
,
x
1
,
…
,
x
n
}
be the basis set of a finite metric space, where the points are inductively listed such that
x
k
x_k
x
k
maximizes the product of the distances from the points
{
x
0
,
x
1
,
…
,
x
k
−
1
}
\{x_0, x_1,\ldots , x_{k-1}\}
{
x
0
,
x
1
,
…
,
x
k
−
1
}
for each
1
⩽
k
⩽
n
.
1\leqslant k\leqslant n.
1
⩽
k
⩽
n
.
Prove that if for each
x
∈
X
x\in X
x
∈
X
we let
Π
x
\Pi_x
Π
x
be the product of the distances from
x
x{}
x
to every other point, then
Π
x
n
⩽
2
n
−
1
Π
x
\Pi_{x_n}\leqslant 2^{n-1}\Pi_x
Π
x
n
⩽
2
n
−
1
Π
x
for any
x
∈
X
.
x\in X.
x
∈
X
.
metric space
inequalities