MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2014 Miklós Schweitzer
5
5
Part of
2014 Miklós Schweitzer
Problems
(1)
Divergent sum of inverses
Source: Miklós Schweitzer 2014, P5
12/22/2014
Let
α
\alpha
α
be a non-real algebraic integer of degree two, and let
P
\mathbb{P}
P
be the set of irreducible elements of the ring \mathbb{Z}[ \alpha] . Prove that
∑
p
∈
P
1
∣
p
∣
2
=
∞
\sum_{p\in \mathbb{P}}^{{}}\frac{1}{|p|^{2}}=\infty
p
∈
P
∑
∣
p
∣
2
1
=
∞
superior algebra
superior algebra unsolved