MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
2012 Miklós Schweitzer
9
9
Part of
2012 Miklós Schweitzer
Problems
(1)
Miklós Schweitzer 2012 P9
Source: Miklós Schweitzer 2012 P9
8/20/2018
Let
D
D
D
be the complex unit disk
D
=
{
z
∈
C
:
∣
z
∣
<
1
}
D=\{z \in \mathbb{C}: |z|<1\}
D
=
{
z
∈
C
:
∣
z
∣
<
1
}
, and
0
<
a
<
1
0<a<1
0
<
a
<
1
a real number. Suppose that
f
:
D
→
C
∖
{
0
}
f:D \to \mathbb{C}\setminus \{0\}
f
:
D
→
C
∖
{
0
}
is a holomorphic function such that
f
(
a
)
=
1
f(a)=1
f
(
a
)
=
1
and
f
(
−
a
)
=
−
1
f(-a)=-1
f
(
−
a
)
=
−
1
. Prove that
sup
z
∈
D
∣
f
(
z
)
∣
⩾
exp
(
1
−
a
2
4
a
π
)
.
\sup_{z \in D} |f(z)| \geqslant \exp\left(\frac{1-a^2}{4a}\pi\right) .
z
∈
D
sup
∣
f
(
z
)
∣
⩾
exp
(
4
a
1
−
a
2
π
)
.
college contests
Miklos Schweitzer