MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1995 Miklós Schweitzer
8
8
Part of
1995 Miklós Schweitzer
Problems
(1)
analysis
Source: miklos schweitzer 1995 q8
10/5/2021
Let P be a finite, partially ordered set with one largest element, which is the only upper bound of the set of minimal elements. Prove that any monotonic function
f
:
P
n
→
P
f : P^n\to P
f
:
P
n
→
P
can be written in the form
g
(
x
1
,
x
2
,
.
.
.
,
x
n
,
c
1
,
.
.
.
,
c
m
)
g( x_1 , x_2 , ..., x_n , c_1 , ..., c_m )
g
(
x
1
,
x
2
,
...
,
x
n
,
c
1
,
...
,
c
m
)
, where
c
i
∈
P
c_i\in P
c
i
∈
P
and g is a monotonic, idempotent function. (g is idempotent iff
g
(
x
,
x
,
.
.
.
,
x
)
=
x
∀
x
∈
P
g(x , x , ..., x) = x\,\forall x\in P
g
(
x
,
x
,
...
,
x
)
=
x
∀
x
∈
P
)
partial order
analysis