Let ξ1,ξ2,... be independent random variables such that Eξn=m>0 and Var(ξn)=σ2<∞(n=1,2,...) . Let {an} be a sequence of positive numbers such that an→0 and ∑n=1∞an=∞. Prove that P(n→∞limk=1∑nakξk=∞)=1.
P. Revesz limitprobability and stats