Let f(x)\equal{}a_0\plus{}a_1x\plus{}a_2x^2\plus{}a_{10}x^{10}\plus{}a_{11}x^{11}\plus{}a_{12}x^{12}\plus{}a_{13}x^{13} \; (a_{13} \not\equal{}0) and g(x)\equal{}b_0\plus{}b_1x\plus{}b_2x^2\plus{}b_{3}x^{3}\plus{}b_{11}x^{11}\plus{}b_{12}x^{12}\plus{}b_{13}x^{13} \; (b_{3} \not\equal{}0)
be polynomials over the same field. Prove that the degree of their greatest common divisor is at least 6.
L. Redei algebrapolynomialgreatest common divisorsuperior algebrasuperior algebra unsolved