4. Let f(x) be a real- or complex-value integrable function on (0,1) with ∣f(x)∣≤1. Setck=∫01f(x)e−2πikxdxand construct the following matrices of order n:T=(tpq)p,q=0n−1,T∗=(tpq∗)p,q=0n−1where tpq=cq−p,t∗=cp−q . Further, consider the following hyper-matrix of order m: S=ET∗T∗2…T∗m−1TET∗…T∗m−2T2TE…T∗m−3……………Tm−2Tm−3Tm−3…T∗Tm−1Tm−2Tm−2…E(S is a matrix of order mn in the ordinary sense; E denotes the unit matrix of order n).
Show that for any pair (m,n) of positive integers, S has only non-negative real eigenvalues. (R. 19) college contestsMiklos Schweitzerfunctionmatrixlinear algebraanalysis